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Abstract

The paper describes an analysis method that extends the

applicability of frequency-domain methods to strongly nonlinear

circuits. Nordinearities are described with Chebyshev expansions

which are evaluated with a numerically stable three-term recurrence

formula. The method is coupled with a novel, measurement-based

consistent modelling approach which aUows improved accuracy in

describing the frequency-dependence of the measured small-signal

parameters. The analysis method and the modelling approach are

verified by comparing measurements and calculations on a

MESFET mixer, driven with two and three tones.

Introduction

Analysis of nonlkear microwave circuits using harmonic-

balance (HB) methods is hampered by long computation time,

when several excitation frequencies are present [1,2] and

currently only three independent frequencies can be handled.

Frequency-domain methods do not suffer from the same

limitations: both the linear and nonlhear parts of the circuit

are analysed in the ti-equency domain so that the time-

consuming conversions between frequency and time domains

are avoided. Also, the number of independent frequencies is

not limited to three. The spectral-balance method of Rhyne et

al. [3], which uses power series to approximate the nonlhear

finctions, is a well-known example of frequency-domain

methods.

Modelling of nonlkear devices has been the weakest point of

the fkequency-domain approach. Nonlkear components are

tradkionally modelled in the time domain by using algebraic

equations to describe the nonhnearhies. Fitting power series

into such equations is neither accurate nor elegant approach.

In addition, strongly nonlinear functions require a large

number of terms, e.g. several tens, in the series. High-degree

terms typically have large coefficients and this degrades

significantly the numerical accuracy. As a result, the

application of the methods using power series has been limited

to relatively weakly nonhnear circuits.

Frequency-domain method

This paper describes a frequency-domain method where both

the limitations of the power series approach are removed: All

the nonlkearities are represented with Chebyshev expansions

instead of power series [4]. Excellent numerical stability of

these expansions allows the use of high-degree terms without

problems. A novel consistent modelling approach is presented,

where the frequency-domain large-signal model is constructed

directly from small-signal measurements through integration

[5], In comparison to other measurement-based models, e.g.

[6], this approach makes possible more accurate repre-

sentation of the frequency-dependence of the small-signal y -

parameters of the device. Frequency-dependent characteristics

(e.g. gal,) are described in a natural way, in contrast to the HE

methods, where the time-domain formulation of the

nonlkearities makes it very dKfrcult to construct a large-signal

model that is accurate both at DC and RF. In fact, the earlier

disadvantage of the frequency-domain approach, modelling of

nonlinear devices, is now turned into an advantage.

Coupling the new large-signal model to the frequency-domain

algorithm results in an effective and accurate method for

analysing nonlinear circuits under multi-tone excitation, The

large-signal model and the evaluation of the currents in the

frequency domain are discussed in the following chapters.

Large-signal model

We assume that the currents at the two terminals of the

intrinsic FET, driven with large-signal voltages vi(t), vz(f), can

be written in the following form (i = 1, 2):

i,(t) = gy(vl , V2) +

+9? W7V2) +9 W1>V2) +I:(V1>V2) +“””
(1)

where the dots indicate time-derivatives. This expression is an

extension of the conventional quasi-static formulation [7,8],

where only the first two terms of the series expansion are

included, namely the static current through a nonhnear

conductance, g/OJ, and the first order dynamic current through

a nonlinear capacitance, ~i []). The higher order terms allow an

accurate description of the frequency-dependence of the

measured small-signal parameters, as will be shown below.

We have a large-signal circuit model as shown in Figure 1.

Figure 1 Large-signal circuit model for a nonhnear two-port.
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We require that the model is time-invariant, i.e., the nonhnear

timctions g}’) and q:’) are not explicit fimctions of time, but

their time-dependence is solely through the dependence on the

two controlling voltages. Further, we assume that the partial

derivatives of these fimctions (i, j = 1,2, k= 1,2, ...).

(2)

depend only on the instantaneous voltages vi(f), v2(t), and not

on their time-derivatives. Whh these assumptions, we can

write the small-signal response of the device at port i, at DC

bias point VIO, VZO, to a small variation in the voltages

dvl(t),dv2(t)in the following form:

Here all the partial derivatives are developed at the DC

operating point. Moving to thq frequency domain, we obtain

the response to a small sinusoidal excitation dvl~~, dv@, at

tiequency~:

This can be compared with the measured small-signal

response at a DC bias point (Vlo, VZO):

4(fk) = Y,1(Ko,~20,cDk)~4(A) +
+ y12(qo,v’20,cDk).dv,(.fk) (5)

Here yij(VIO, 207 k~ o ) are the measured small-signal y -

parameters of the intrinsic FET at the bias point (Vlo, Vzo)

and frequency jk We can now see that the higher order terms

in (1) account for the flequency-dependence of the measured

y - parameters:’ The second order term gives quadratic

frequency-dependence to the real part of yu., the third order

term causes cubic variation in the imagina~ part ofyti and so

on. Thus we can identifj each of the terms in Equation (3)

directly from the measurements. The large-signal fimctions in

(1) can then be calculated tlom the path-independent line

integrals [6]:

gy(vl, vz)=<o(~o,v,o) +

.,(0

+ ~h:(vl ,V20) dvl + “~h:(vl(t), V2 ) dv2 (6a)

J’iO ~20

We can notice that it is important that the small-signal

iimctions hv(k) do not depend on the time-derivatives of the

voltages, since, if this were the case, it would be impossible to

construct the large-signal finctions g~o) and q}~) from static

small-signal measurements only.

We observe that retaining only the first two terms in the series

(1) shows resemblance to the Root model [6], where the

frequency-dependence of the real parts of yll and ylz (caused

by the series connection of ri with Cg~ and rgd with Cgd,

respectively) are neglected. Keeping higher order terms in the

series allows more accurate description of the fi-equency-

dependence of they - parameters of the intrinsic device in a

consistent manner. The large-signal and small-signrd models

are inherently consistent, since the large-signal model is

directly constructed from the small-signal characteristics

through the line integrals (6). It should be noted that the

‘delay-effect’, corresponding to the imaginary part of Yzl

(which is normally described with ~ in small-signrd models) is

represented in this model with h21@J (k odd) i.e., as a

transcapacitance, as is done also in [6].

Next step in the modelling is finding the Chebyshev

expansions to describe the dependence of each of the hvckj

functions on the two bias voltages. For example, for the static

conductance we have:

Here x and y are the bias voltages, normalized to [-1 ...+1]

and K and L are the degrees of the expansion in the two

dimensions. Standard surface-fitting procedures can be used

to determine the Chebyshev coefficients am. [9]. The

coefficients are then written into matrix Ho(o), which has the

dimension (K+l) x (L+l). In practice, the coefficients are first

determined for a high-degree expansion and the degree is then

reduced as long as the approximation error is acceptable. With

the Chebyshev expansions, in contrast to the power series, the

coefficients of a lower-degree expansion are found simply by

truncation of the higher degree coefficients at the desired

point.

For the evaluation of the line integrals in (6), the Chebyshev

coefficients for the integrated small-signal fimctions have to

be determined. This is easily done from the coefficient

matrices Hr(k) for the fimctions hti@) by using the integration

formula of the Chebyshev polynomials [10]. The resulting

matrix of coefficients, integrated e.g. over x (that is, over VI),

is written as Htix@).

Evaluation of the currents in the frequency domain

The frequencies at which the circuit is to be analysed, are

selected before solving the circuit equations. During the

analysis, this set of frequencies, or the ji-equency set, is kept

fixed and only those harmonics and intermodulation products

falling on these frequencies are taken into account. The

frequency set consists of P fimdamental frequencies and their

harmonics and intermodulation products. The total number of

frequencies in the ilequency set is N+l, including DC. in the

frequency-domain methods, unlike in HB methods, P is not

limited to three. The memory size and speed of the computer

determine the maximum number of frequencies that can be

handled. Each frequency can be written as:

~k = klcol + k20)2+ + k~p. Maximum values for the
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harmonic numbers k], . . . . kP are selected so that all the

significant frequencies are retained, but the total number of

frequencies is kept to the minimum. In addition, the frequency

set is limited by an independent parameter maxIM, which

gives the maximum order of intermodulation products that are

taken into account.

Evaluation of the nonhnear iimctions, expressed with

Chebyshev expansions, requires multiplications between two

waveforms. In the ilequency domain the convolution of the

two fkequency spectra has to be calculated:

c(t)= a(t).b(t) e c=a*b (8)

Here the asterisk stands for the convolution. All the

waveforms are represented in the frequency domain with

complex vectors of phasors and written with bold typeface.

The convolution (8) is most conveniently calculated by

multiplying the phasors of a with phasors of b (up to desired

order) and using pre-calculated index vectors to assign the

products to the corresponding frequencies in vector c [4].

Another way of calculating the convolution is from a matrix

product [11]:

~=A.b (9)—

Here matrix A is obtained from vector a through a

transformation, which consists of addition and assignment

operations on the phasors of a, with the help of pre-calculated

index vectors [11 ]. Underlines in (9) indicate that c and b are
represented with real vectors of dimension (2N+1) x 1,

instead of the normal complex representation of dimension

(N+l) x 1. This formulation is used when a time-domain

division b(t) = c(t)/ a(t) has to be calculated in the frequency

domain. From (9) we can see that in this case the unknown

vector b is obtained from the solution of a set of linear

equations:

~= A-’. g (lo)

The same principle is used in constructing the Jacobian [12].

Functions approximated with Chebyshev expansion are

evaluated in a numerically stable manner by using the well-

known Clenshaw’s recurrence formula [10]. In the frequency

domain, a two-dimensional flmction j(x,y) is evaluated from

the following recursion, by first calculating vectors Ci in y -

direction for each i = K, K-1, .... 0:

b:+, = b;+, = O

b(’) +a,,tj j=L, L –1, ....b(o=2. y++,- 1+2
J

O (ha)

C, = +(b(’) _ b;)
o

Next, these coefficient vectors are used to evrduate the

timction in x - direction:

dK+2 = dK+l = O

dz=2. x*dl+l–d,+, +c, i= K, K–1, .... 0 (llb)

f(x, y) = +(do - d,)

Here x and y are the nornmhzed voltages VI and vz, matrix A

contains the Chebyshev coefficients av with dimension

(K+ 1)x (L+l) and 3 is a (N+l) x 1 vector, with the first

element equal to one and the others are zeros. We use a short

notation with operator T{} for this recursion:

f(x,y) = T{A, X, Y} (12)

We are now able to calculate the large-signal functions, given

in Equation (6), dkectly in the fi-equency domain, for given

spectra of the driving voltages:

g,(vl,vz)= T{D:, xo,Yo}~ +

+ a. [ T{H:x,x, Yoti} - T{H:X,XOS,Y06} ] +

+P” [ T{H:Y, x>Y }- T{HyY,X,YOti} ] (lsa)

q’:(v,,v2)=a. [T{ H:;, X,Y06] - T{HX:,Xo~,Yo~} ] +

+p. [ T{H:Y,X,Y} - T{H:Y,X,Y05} ] (13b)

Here x,, yO is the normalized DC operating point, D~ is the

matrix of Chebyshev coefficients for the DC current in port i

and a and /3 account for the change of variables in the

calculation of the line integrals:

The current at port i of the device, given in Equation (l), is

then calculated in the tiequency domain:

N4,V2)=9,(VI,V2)+

+Q. qy(v,,v2)+ C22.qy(v,, v2)+.. - (15)

Here !2 is a QV+l) x (lV+l) matrix with the angular

frequencies jok in the diagonal and zero elsewhere.

Measured and calculated results

A large-signal model was constructed for a 1 x 300 mm

monolithic MESFET (VT= –1. 5 V) using the principle

described above. First, DC measurements were made and then

s - parameters were measured (on wafer) over the entire

operating range of bias voltages (161 bias points,

V&= –3...0.75 V, VJ,= 0...5 V) and frequencies (0.1 ...18.1

GHz). Parasitic were extracted with the help of the

measurements on cold FET and Chebyshev expansions were

fitted on they -parameters of the intrinsic FET.

Next, mixer measurements were made on wafer, using the

same FET chip, with both the drain and source terminated to

50 Q, The effect of the bias voltages and local oscillator (LO)

power on the conversion gain (& = 0.8 GHz, & = 0.9 GHz)

were measured around the experimentally found best

operating point Vg, = –1.3 V, PLO= 6 dBm at drain voltage

Vd, = 2.5 V. These measurements were simulated with the

frequency-domain algorithm with three harmonics of RF, five

harmonics of LO and interrnodulation (I&f) products up to

order five taken into account, or with 27 Ilequencies in totrd.

Figures 2 and 3 show both the measured and simulated

results. We can see that the effects of bias voltages and LO

power are accurately predicted by the simulation.
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Figure 3 Measured (symbols) and calculated (lines)

conversion gain versus local oscillator power

Finally, mixer intermodulation measurements were made at

the same operating point by sweeping the power level of two

closely (5 MHz) separated RF tones and observing the power

levels of the IF and third order intermodulation products on a

spectrum analyzer. Again, the measurement was simulated

using the frequency-domain method. Three harmonics of the

two RF signals, five harmonics of the LO and intermodulation

products up to order five, or 104 frequencies in total, were

taken into account. In order to be able to extend the

simulation to relatively high power levels, i.e., past saturation

of the IF, it was necessa~ to widen the normalization range of

the gate voltage to –5. ..0.8 V by extrapolation. Measured and

simulated results are shown in Figure 4, and again we can

notice excellent agreement. The computer used in all the

calculations was a 486 machine with 8 Mbyte RAM.

Conclusions

An analysis method has been presented that extends the

applicability of fi-equency-domain methods to strongly

nonlinear circuits. A novel tlequency-domain modelling

scheme for nonlinear devices has been developed. The model

is inherently self-consistent due to the measurement-based

construction: The large-signal currents are directly

constructed from small-signal y - parameters through

integration. The model has the advantage that the fiequency-
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Figure 4 Measured (symbols) and crdculated (lines) IF and

I&I levels at the output of the mixer.

dependence of the measured small-signal parameters can be

described as accurately as desired. The model consists of

polynomials, therefore, all the derivatives of interest exist and

are continuous. Frequency-domain construction guarantees

inherent accuracy in describing frequency-dependent

characteristics, like g& of the no~inear de~ces.

The analysis method and modelling approach have been

experimentally verified by comparing measured and simulated

results on a monolithic MESFET operating as mixer. The

efficiency of the frequency-domain method has been

demonstrated by analysing the interrnodulation distortion of

the mixer with three independent tones and over 100

frequencies in total, driven past saturation with strong RF

signals, on a personal computer.
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