ANALYSIS OF STRONGLY NONLINEAR CIRCUITS WITH
A FREQUENCY-DOMAIN METHOD COUPLED WITH
A CONSISTENT LARGE-SIGNAL MODEL

Tapani Narhi

ESA-ESTEC
European Space Agency
PO Box 299, 2200 AG Noordwijk
The Netherlands

Abstract

The paper describes an analysis method that extends the
applicability of frequency-domain methods to strongly nonlinear
circuits. Nonlinearities are described with Chebyshev expansions
which are evaluated with a numerically stable three-term recurrence
formula. The method is coupled with a novel, measurement-based
consistent modelling approach which allows improved accuracy in
describing the frequency-dependence of the measured small-signal
parameters. The analysis method and the modelling approach are
verified by comparing measurements and calculations on a
MESFET mixer, driven with two and three tones.

Introduction

Analysis of nonlinear microwave circuits using harmonic-
balance (HB) methods is hampered by long computation time,
when several excitation frequencies are present [1,2] and
currently only three independent frequencies can be handled.
Frequency-domain methods do not suffer from the same
limitations: both the linear and nonlinear parts of the circuit
are analysed in the frequency domain so that the time-
consuming conversions between frequency and time domains
are avoided. Also, the number of independent frequencies is
not limited to three. The spectral-balance method of Rhyne et
al. [3], which uses power series to approximate the nonlinear
functions, is a well-known example of frequency-domain
methods.

Modelling of nonlinear devices has been the weakest point of
the frequency-domain approach. Nonlinear components are
traditionally modelled in the time domain by using algebraic
equations to describe the nonlinearities. Fitting power series
into such equations is neither accurate nor elegant approach.
In addition, strongly nonlinear functions require a large
number of terms, e.g. several tens, in the series. High-degree
terms typically have large coefficients and this degrades
significantly the numerical accuracy. As a result, the
application of the methods using power series has been limited
to relatively weakly nonlinear circuits.

Frequency-domain method

This paper describes a frequency-domain method where both
the limitations of the power series approach are removed: All
the nonlinearities are represented with Chebyshev expansions
instead of power series [4]. Excellent numerical stability of
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these expansions allows the use of high-degree terms without
problems. A novel consistent modelling approach is presented,
where the frequency-domain large-signal model is constructed
directly from small-signal measurements through integration
[5]. In comparison to other measurement-based models, e.g.
[6], this approach makes possible more accurate repre-
sentation of the frequency-dependence of the small-signal y -
parameters of the device. Frequency-dependent characteristics
(e.g. g,,) are described in a natural way, in contrast to the HB
methods, where the time-domain formulation of the
nonlinearities makes it very difficult to construct a large-signal
model that is accurate both at DC and RF. In fact, the earlier
disadvantage of the frequency-domain approach, modelling of
nonlinear devices, is now turned into an advantage.

Coupling the new large-signal model to the frequency-domain
algorithm results in an effective and accurate method for
analysing nonlinear circuits under multi-tone excitation. The
large-signal model and the evaluation of the currents in the
frequency domain are discussed in the following chapters.

Large-signal model

We assume that the currents at the two terminals of the
intrinsic FET, driven with large-signal voltages v,(9), v,(¥), can
be written in the following form (i = 1, 2):

ii(’) = g}"’(V,,vz) +
+ q:l)(v1yvz) + q:z) vl,vz) + qi(l)(vl’vz) IR 0))

where the dots indicate time-derivatives. This expression is an
extension of the conventional quasi-static formulation [7,8],
where only the first two terms of the series expansion are
included, namely the static current through a nonlinear
conductance, g, and the first order dynamic current through
a nonlinear capacitance, §,®. The higher order terms allow an
accurate description of the frequency-dependence of the
measured small-signal parameters, as will be shown below.
We have a large-signal circuit model as shown in Figure 1.

i) it

—
/l\v,(t)

Figure 1 ‘Large-signal circuit model for a nonlinear two-port.
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We require that the model is time-invariant, i.e., the nonlinear
functions g© and ¢,® are not explicit functions of time, but
their time-dependence is solely through the dependence on the
two controlling voltages. Further, we assume that the partial
derivatives of these functions (7, j=1,2, k=1,2, ..}

ag(o) aq(k)
©) — i (k) — 1
hx) (vl’vz)_ 6\{7 hz] (vl’v2)~ aVJ

@

depend only on the instantaneous voltages v (?), v,(f), and not
on their time-derivatives. With these assumptions, we can
write the small-signal response of the device at port 7, at DC
bias point Vi, V,, to a small variation in the voltages
dv,({), dv,(?) in the following form:

di(t)=hOdv, + hOdv, + KY v, + Kb, +
7 11 1 12 2 1 1 2
+ W dV, + hGdv, + - 3)

Here all the partial derivatives are developed at the DC
operating point. Moving to the frequency domain, we obtain
the response to a small sinusoidal excitation dv,(f,), dv,(f,), at
frequency f;:

di,(f)=[ B+ G )G + (ja Y 1S + - |- v (f,) +
+ [ B9 + Go )3 + (Go,) S+ |-dv,(f,) (@)

This can be compared with the measured small-signal
response at a DC bias point (V14,V,,):

di(f) = YV Vaos @) i (f,) +

+ 3,V V0, @) - v, (f) ®
Here y;(Vi0,V30,®,) are the measured small-signal y -
parameters of the intrinsic FET at the bias point (V,V,,)
and frequency f,. We can now see that the higher order terms
in (1) account for the frequency-dependence of the measured
y - parameters; The second order term gives quadratic
frequency-dependence to the real part of yy, the third order
term causes cubic variation in the imaginary part of y;; and so
on. Thus we can identify each of the terms in Equation (3)
directly from the measurements. The large-signal functions in
(1) can then be calculated from the path-independent line
integrals [6]:

g?)(vl,vz): Ixo(Vlo:Vzo) +

V() va(t)

+ [BOT) v + [ B v)dv,  (6a)
[0 V20
w(t) v(t)

@0y = | OV dy + [ B v,)dv,  (6b)

1] Vae

We can notice that it is important that the small-signal
functions #,® do not depend on the time-derivatives of the
voltages, since, if this were the case, it would be impossible to
construct the large-signal functions g® and ¢® from static
small-signal measurements only.
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We observe that retaining only the first two terms in the series
(1) shows resemblance to the Root model [6], where the
frequency-dependence of the real parts of y;; and y,, (caused
by the series connection of r; with Cge and rpy with Cpy
respectively) are neglected. Keeping higher order terms in the
series allows more accurate description of the frequency-
dependence of the y - parameters of the intrinsic device in a
consistent manner. The large-signal and small-signal models
are inherently consistent, since the large-signal model is
directly constructed from the small-signal characteristics
through the line integrals (6). It should be noted that the
'delay-effect’, corresponding to the imaginary part of y,;
(which is normally described with T in small-signal models) is
represented in this model with A,;® (kK odd) ie, as a
transcapacitance, as is done also in [6].

Next step in the modelling is finding the Chebyshev
expansions to describe the dependence of each of the 4,®
functions on the two bias voltages. For example, for the static
conductance we have:

hP,vy) =2 Y @ () T,()

n=0 m=0

Q)

Here x and y are the bias voltages, normalized to [-1...+1]
and X and L are the degrees of the expansion in the two
dimensions. Standard surface-fitting procedures can be used
to determine the Chebyshev coefficients a,, [9]. The
coefficients are then written into matrix H;®, which has the
dimension (K+1) x (L+1). In practice, the coefficients are first
determined for a high-degree expansion and the degree is then
reduced as long as the approximation error is acceptable. With
the Chebyshev expansions, in contrast to the power series, the
coefficients of a lower-degree expansion are found simply by
truncation of the higher degree coefficients at the desired
point.

For the evaluation of the line integrals in (6), the Chebyshev
coefficients for the integrated small-signal functions have to
be determined. This is easily done from the coefficient
matrices H,® for the functions h;f® by using the integration
formula of the Chebyshev polynomials [10]. The resulting
matrix of coefficients, integrated e.g. over x (that is, over v)),
is written as H,,®.

Evaluation of the currents in the frequency domain

The frequencies at which the circuit is to be analysed, are
selected before solving the circuit equations. During the
analysis, this set of frequencies, or the frequency set, is kept
fixed and only those harmonics and intermodulation products
falling on these frequencies are taken into account. The
frequency set consists of P fundamental frequencies and their
harmonics and intermodulation products. The total number of
frequencies in the frequency set is N+1, including DC. In the
frequency-domain methods, unlike in HB methods, P is not
limited to three. The memory size and speed of the computer
determine the maximum number of frequencies that can be
handled. [Each frequency can be written  as:
o, = ko, + ko, + - +kpop. Maximum values for the



harmonic numbers k,, ..., k, are selected so that all the
significant frequencies are retained, but the total number of
frequencies is kept to the minimum. In addition, the frequency
set is limited by an independent parameter maxIM, which
gives the maximum order of intermodulation products that are
taken into account.

Evaluation of the nonlinear functions, expressed with
Chebyshev expansions, requires multiplications between two
waveforms. In the frequency domain the convolution of the
two frequency spectra has to be calculated:

c(t) = a(t)- b(r) o c=asb ®)

Here the asterisk stands for the convolution. All the
waveforms are represented in the frequency domain with
complex vectors of phasors and written with bold typeface.
The convolution (8) is most conveniently calculated by
multiplying the phasors of a with phasors of b (up to desired
order) and using pre-calculated index vectors to assign the
products to the corresponding frequencies in vector ¢ [4].
Another way of calculating the convolution is from a matrix
product [11]:

c=Ab ©)

Here matrix A is obtained from vector a through a
transformation, which consists of addition and assignment
operations on the phasors of &, with the help of pre-calculated
index vectors [11]. Underlines in (9) indicate that ¢ and b are
represented with real vectors of dimension (2N+1)x1,
instead of the normal complex representation of dimension
(V+1)x 1. This formulation is used when a time-domain
division b(f) = c(?) / a(f) has to be calculated in the frequency
domain. From (9) we can see that in this case the unknown
vector b is obtained from the solution of a set of linear
equations:

b=A"-¢ (10)

The same principle is used in constructing the Jacobian [12].

Functions approximated with Chebyshev expansion are
evaluated in a numerically stable manner by using the well-
known Clenshaw's recurrence formula [10]. In the frequency
domain, a two-dimensional function f{x,y) is evaluated from
the following recursion, by first calculating vectors C; in y -
direction for each i = K, K-1, ..., O:

0 @
b(l,)+2 =b;, =0
by =2.y*bl,, -b’ +a,8 j=LL-1,.,0 (1la)
¢, =1(b; -b7)

Next, these coefficient vectors are used to evaluate the
function in x - direction:

dK+2 = dK+l = o

d: = 2.x*dz+l —dr+2

f(xy)=1(d,-d,)
Here X and Y are the normalized voltages v, and v,, matrix A

contains the Chebyshev coefficients a; with dimension
(K+1)x (L+1) and & is a (N+1)x 1 vector, with the first

+e, i=KK-1,.,0 (115
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element equal to one and the others are zeros. We use a short
notation with operator T{} for this recursion:

f(x,y)=T{A xy} (12)

We are now able to calculate the large-signal functions, given
in Equation (6), directly in the frequency domain, for given
spectra of the driving voltages:

9,(v,v,)= T{ch’xo:yo} o+
| o

x>

8 T{HY, x,y} - T{HY, % y,8} |
42w, v,) = -] T{HE, x, 3,8} - T{HY, x5, y,5) | +

8 T{HY, xy} - THE, %, 1,5} |
Here x,, y, is the normalized DC operating point, D is the
matrix of Chebyshev coefficients for the DC current in port i
and a and f account for the change of variables in the
calculation of the line integrals:

%, 3,8}~ T{H, x,8,y,8} | +

(13a)

(13b)

I/hmm - Vlrrun

v
0= ———=
dx 2

dv, Voo -V,

ﬂ:_z 2max 2min

d 2

The current at port 7 of the device, given in Equation (1), is
then calculated in the frequency domain:

(14)

iz(vl’v2): gz(v1:v2)+

+Q-q‘,"(v1,v2)+Q2-q‘j’(vl,vz)+--- (15)

Here Q is a (N+1)x (N+1) matrix with the angular
frequencies joy, in the diagonal and zero elsewhere.

Measured and calculated results

A large-signal mode! was constructed for a 1x300 mm
monolithic MESFET (V,=-1.5V) using the principle
described above. First, DC measurements were made and then
s - parameters were measured (on wafer) over the entire
operating range of bias voltages (161 bias points,
Ves=-3..075V, V;=0.5V) and frequencies (0.1...18.1
GHz). Parasitics were extracted with the help of the
measurements on cold FET and Chebyshev expansions were
fitted on the y -parameters of the intrinsic FET.

Next, mixer measurements were made on wafer, using the
same FET chip, with both the drain and source terminated to
50 Q. The effect of the bias voltages and local oscillator (LO)
power on the conversion gain (f,,. = 0.8 GHz, f;, = 0.9 GHz)
were measured around the experimentally found best
operating point V,,=-13V, P,,=6 dBm at drain voltage
V,=2.5V. These measurements were simulated with the
frequency-domain algorithm with three harmonics of RF, five
harmonics of LO and intermodulation (IM) products up to
order five taken into account, or with 27 frequencies in total.
Figures 2 and 3 show both the measured and simulated
results. We can see that the effects of bias voltages and LO
power are accurately predicted by the simulation.
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Figure 3 Measured (symbols) and calculated (lines)
conversion gain versus local oscillator power.

Finally, mixer intermodulation measurements were made at
the same operating point by sweeping the power level of two
closely (5 MHz) separated RF tones and observing the power
levels of the IF and third order intermodulation products on a
spectrum analyzer. Again, the measurement was simulated
using the frequency-domain method. Three harmonics of the
two RF signals, five harmonics of the LO and intermodulation
products up to order five, or 104 frequencies in total, were
taken into account. In order to be able to extend the
simulation to relatively high power levels, i.e., past saturation
of the IF, it was necessary to widen the normalization range of
the gate voltage to —5...0.8 V by extrapolation. Measured and
simulated results are shown in Figure 4, and again we can
notice excellent agreement. The computer used in all the
calculations was a 486 machine with 8 Mbyte RAM.

Conclusions

An analysis method has been presented that extends the
applicability of frequency-domain methods to strongly
nonlinear circuits. A novel frequency-domain modelling
scheme for nonlinear devices has been developed. The model
is inherently self-consistent due to the measurement-based
construction: The large-signal currents are directly
constructed from small-signal y - parameters through
integration. The model has the advantage that the frequency-
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Figure 4 Measured (symbols) and calculated (lines) IF and
IM levels at the output of the mixer.

dependence of the measured small-signal parameters can be
described as accurately as desired. The model consists of
polynomials, therefore, all the derivatives of interest exist and
are continuous. Frequency-domain construction guarantees
inherent accuracy in describing frequency-dependent
characteristics, like g, of the nonlinear devices.

The analysis method and modelling approach have been
experimentally verified by comparing measured and simulated
results on a monolithic MESFET operating as mixer. The
efficiency of the frequency-domain method has been
demonstrated by analysing the intermodulation distortion of
the mixer with three independent tones and over 100
frequencies in total, driven past saturation with strong RF
signals, on a personal computer.
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